国际标准期刊号: 2469-9764

工业化学:开放获取

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • 哥白尼索引
  • 谷歌学术
  • 参考搜索
  • 研究期刊索引目录 (DRJI)
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • 学者指导
  • 日内瓦医学教育与研究基金会
  • 欧洲酒吧
分享此页面

抽象的

A Conductive Hydrogel Scaffold Reinforced with Nanofibers for Peripheral Nerve Tissue Engineering

Alireza Mahjoubnia

Statement of the Problem: Fabrication of conducting fiber-hydrogel composites  imicking the properties of peripheral nerve Extra Cellular Matrix (ECM) is critical for the success of nerve tissue engineering. These systems can promote the regeneration of peripheral nerve tissues which respond to electrical conduction to improve the individual deficiencies of electro spun and hydrogel scaffolds such as insignificant cellular infiltration and poor mechanical properties. 

Aim: In this study electrospinning and amino-lysis reaction were used to prepare Polylactic Acid (PLA) fragmented nanofibers. Next step was grafting conductive Polypyrrole (PPy) to the chitosan (CS) backbone. Scaffolds were obtained by dispersion of fragmented fibers into CS-PPY and gelation occurred by genipin. Scanning Electron Microscopy (SEM) images represented the formation of continues and uniform PLA nanofibers without beads. Grafting NH2 groups onto fragmented PLA nanofibers was confirmed by Fourier Transform Infrared (FTIR) spectroscopy and Energy- dispersive X-ray spectroscopy (EDX). Electrical conductivity and mechanical properties were performed in order to characterize the produced composite properties. Dispersion of nanofibers into the CS-PPY hydrogel improved mechanical properties compared to nanofiber-free scaffolds and reduced water absorption. SEM images showed that conductive composite scaffold supports PC12 cell adhesion, infiltration and proliferation. 

Findings: Therefore, it could be concluded that PLA nanofibers/CS-PPY hydrogel composites are a promising material for peripheral nerve regeneration. 

 

 

Note: This work was presented in Frontiers in Nanotechnology and Nanomaterials, which was scheduled in May 04-05, 2020 at Vienna, Austria.