国际标准期刊号: 2155-952X

生物技术与生物材料

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • 哥白尼索引
  • 谷歌学术
  • 夏尔巴·罗密欧
  • 打开 J 门
  • Genamics 期刊搜索
  • 学术钥匙
  • 研究圣经
  • 中国知网(CNKI)
  • 访问全球在线农业研究 (AGORA)
  • 电子期刊图书馆
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • SWB 在线目录
  • 虚拟生物学图书馆 (vifabio)
  • 普布隆斯
  • 日内瓦医学教育与研究基金会
  • 欧洲酒吧
  • ICMJE
分享此页面

抽象的

A nanofluidic paradigm and approach to brain water metabolism

Ernst Titovets

The brain interstitial fluid, presenting an external medium for the neural cells, is involved in the nutrient and gas transport, non-synaptic intercellular communication (volume transmission), signal transduction, transport and targeted delivery of drugs and metabolites, ionic homeostasis, removal of pathogenic metabolites, the migration of cells (malignant cells, stem cells), transfer of heat generated by neuractivity
The nanodimentionality of the brain interstitial space has born a dominating opinion within the medico-biological community of a diffusion barrier to water movement and mass transfer events there. On the other hand, the very nanodimentionality of the brain interstitial space dictates the
use of the slip-flow principles of nanofluidics to describe water movement there. The fluid flow in the nanodimentional spaces is usually many orders of magnitude higher than predicted from the conventional no-slip approach. The nanofluidic paradigm to the water movement in the
brain interstitial space has been used by us to describe a nanofluidic mechanism of brain water metabolism. There has been carried out computer simulations, based on the new principle, of the mass transfer of glucose, oxygen and carbon dioxide within the neurovascular unite. We simulated the effects on the brain water metabolism of AQP4 polarization in the astrocyte endfeet membrane enveloping capillaries. Possible clinical implications of the simulation results are discussed. In particular, the nanofluidic mechanism might be used to develop the AQP4-targeted drug therapy of brain edema, drug delivery to brain tumors, removal of pathogenic metabolites and other.