国际标准期刊号: 2168-9806

粉末冶金与采矿学报

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • CAS 来源索引 (CASSI)
  • 哥白尼索引
  • 谷歌学术
  • 打开 J 门
  • Genamics 期刊搜索
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • 普布隆斯
  • 欧洲酒吧
分享此页面

抽象的

A neural Network-Based Expert Control System for the Electrolytic Process in Zinc Hydrometallurgy

Nakano Michi

The electrolytic process, which involves passing an electrical current through insoluble electrodes to cause the breakdown of an aqueous zinc sulfate electrolyte and the deposition of metallic zinc at the cathode, is the final step in zinc hydrometallurgy. The electrolyte concentrations of zinc and sulfuric acid are the most critical control parameters for the investigated electrolytic process. Using neural networks, rule models, and a single-loop control scheme, this paper describes an expert control system for determining and tracking the ideal concentrations of zinc and sulfuric acid. In a hydrometallurgical zinc plant, the system is currently being used to control the electrolytic process. In this paper, the framework design, which includes a specialist regulator and three single-circle regulators, is first made sense of. The chemical reactions involved, empirical knowledge, and statistical data on the procedure are then used to construct neural networks and rule models. Then, at that point, the master regulator for deciding the ideal focuses is planned utilizing the brain organizations and rule models. The three single-circle regulators utilize the PI calculation to follow the ideal focuses. At last, the aftereffects of real runs utilizing the framework are introduced. They demonstrate that the system provides significant economic advantages in addition to high-purity metallic zinc.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证。