开放获取期刊获得更多读者和引用
700 种期刊 和 15,000,000 名读者 每份期刊 获得 25,000 多名读者
Dan T Nguyen and Robert A Norwood
A novel and straight forward approach for analysis of whispering gallery-mode micro cavity sensing is presented using the finite difference time-domain (FDTD) method. The FDTD simulation shows that eigenmodes of sensing objects (SOs) at the micro-scale can be detected as SO signatures, and therefore provide more accurate and robust information on the objects. Thus, detecting eigenmodes as signatures of SOs with WGM microcavities affords a novel biosensing approach based on object recognition. The FDTD simulation not only describes the circulation of the light in a whispering gallery-mode (WGM) microring and multiple interactions between the light and the sensing object, but also other important parameters of the sensing system, such as scattering and radiation losses.