国际标准期刊号: 2161-0460

阿尔茨海默病和帕金森病杂志

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • 哥白尼索引
  • 谷歌学术
  • 夏尔巴·罗密欧
  • 打开 J 门
  • Genamics 期刊搜索
  • 学术钥匙
  • 期刊目录
  • 中国知网(CNKI)
  • 电子期刊图书馆
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • SWB 在线目录
  • 虚拟生物学图书馆 (vifabio)
  • 普布隆斯
  • 日内瓦医学教育与研究基金会
  • 欧洲酒吧
  • ICMJE
分享此页面

抽象的

A Novel Human Neuronal Cell Model to Study Iron Accumulation in Parkinson’s Disease

Kosha J Mehta, Bushra Y Ahmed and Sebastien JC Farnaud

Objectives: With an estimated seven to ten million sufferers worldwide, Parkinson’s disease (PD) is the second most common age-related neurodegenerative disorder. Progress in elucidating its causes has been slow, partly due to the lack of human-relevant models. Similarly, while the contribution of iron is increasingly advocated, identifying its role in disease progression remains challenging mainly due to the lack of valid model. In this study, we created Parkinson-like conditions in a human neuron model and conducted preliminary studies on iron-related parameters to
assess whether these cells replicated iron accumulation observed in Parkinsonism.
Methods: ReNcell VM (human neural progenitor) were differentiated into dopaminergic neurons (dDCNs) and treated with neurotoxin 6-hydroxy dopamine (100 μM) to mimic Parkinsonism. Total intracellular, mitochondrial and cytoplasmic iron was measured by ferrozine assay. Expression of iron-related genes TFRC, SLC40A1, HAMP and SLC25A37 were assessed through real-time PCR.
Results: Data showed that the treated dDCNs accumulated iron over time and exceeded levels measured in untreated dDCNs by 2.5-fold at 48 h (p<0.02). Following the treatment, the treated cells showed lower expression of TFRC (p<0.05), but substantially higher mRNA expressions of SLC40A1 (9-fold; p<0.02) and HAMP (5.7-fold; p<0.05), along with higher intracellular iron (p<0.05). Higher iron accumulation in the mitochondria than cytosol (p<0.05), was also observed with increased expression of the mitochondrial iron-importer SLC25A37 (p=0.08).
Conclusion: Our Parkinsonian model demonstrates iron accumulation and elevated HAMP expression as previously described in PD phenotype. The observed mitochondrial iron shuttling, which is proposed to be one of the primary contributors of oxidative stress in PD, calls for further investigation. The differences observed in distribution of iron in our human model and with the expression of major iron-related proteins, indicate that our model reproduces the disease state successfully, and suggests that further study could help in advancing our understanding of PD.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证。