我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • 哥白尼索引
  • 谷歌学术
  • 夏尔巴·罗密欧
  • 打开 J 门
  • Genamics 期刊搜索
  • 学术钥匙
  • 电子期刊图书馆
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • SWB 在线目录
  • 虚拟生物学图书馆 (vifabio)
  • 普布隆斯
  • 欧洲酒吧
分享此页面

抽象的

A Parametric Study of the Effect of Building Distributions and Size on the Propagation of Sound in the Urban Environment

Mostafa Refat A Ismail*

The net effect at a location deep in the urban fabric of noise arising from the operation of multiple distant sources can be expected to be a function of the building density and typical size of buildings in this area. However, little is known as to how these characteristics of the urban fabric affect noise propagation. In this paper sound propagation through a distributed array of medium sized simple building forms has been investigated, assuming that building faces produce perfect diffusion. The method adopted was to calculate the energy exchange between facades assuming hemispherical propagation from a point located at the centre of the illuminated area of a facade. Thus, the energy exchange between faces is replaced by arrays of point sources located on each face.

For the very regular street configuration employed in the model, it was found that there was a strong channelling effect when the source was located between facades lining a street.

The propagation of sound across a more irregular fabric configuration as a function of building density, building ground floor dimensions and building height was investigated. It was found that the sound attenuation rates for each configuration are linear and virtually identical at approximately 52dB per decade. However, for each configuration there are differences in levels at a particular location that can be attributed to the near field effect of local occlusion in the vicinity of the source. The similar attenuation rates suggest that after the initial occlusion effect has determined the amount of sound energy that progresses to the far field, the effect of occlusion for a higher building density is compensated for by reflections from the facades.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证。