国际标准期刊号: 2476-2024

诊断病理学:开放获取

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

抽象的

A Proposed Early Diagnostic Test for Alzheimer?s Disease Based on Simulations Employing an Artificial Neural Network Memory Model

Lennart Gustafsson

This paper analyzes the behavior of Alzheimer’s disease simulations in an artificial neural network and based on the results proposes alternative possible diagnoses for Alzheimer’s disease. This is one of the most common fatal diseases, increasing in severity over time. Despite its high prevalence and thousands of yearly publications in this area, no cure has been found to date but in anticipation of a cure early detection is important towards fighting the disease.

The simulation of Alzheimer’s disease employs Hopfield memories. It is observed that the number of iterations needed to recognize distorted symbols is influenced by a small loss of connections while the recognition success rate stays surprisingly high for larger losses of elements. This is because the distortion enforces a search iterative process which is superfluous if the symbol tested is identical with the learned symbol. Hence, it is possible to suggest an early diagnostic approach which is based on recognizing e.g. characters of an alphabet with distorted or fragmented cues and measuring the time needed to perform the task, instead of merely measuring the subject’s success rate in the recognition process.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证。