我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • 哥白尼索引
  • 谷歌学术
  • 打开 J 门
  • Genamics 期刊搜索
  • 学术钥匙
  • 安全点亮
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • 普布隆斯
  • ICMJE
分享此页面

抽象的

Acute Effects of Neural Mobilization and Static Hamstring Stretching on Multi-joint Flexibility in a Group of Young Adults

Ben Curtis, Tim Retchford, Kinda Khalaf and Herbert F. Jelinek

Neural tension has been proposed to be a factor influencing multi-joint movements such as sprinting, kicking and bending to pick up an object. Neural mobilizations have been demonstrated to increase range of motion in one joint, however the effect on flexibility across multiple joints has not been described nor compared to the traditional static stretch response. The aim of this study was to compare the effect on flexibility across multiple joints of neural mobilization to the traditional static stretch response. Fifty-two young adults (F = 32, M = 20; aged 18 – 25 years) were recruited from Charles Sturt University and a NE Victorian cross country ski camp and randomly allocated to receive a neural mobilization or static hamstring stretching intervention. The neural mobilization group received three, thirty-second passive Grade III neural mobilizations and the static stretch group received three, thirty-second passive static hamstring stretches. Effects of intervention were evaluated using the Mann-Whitney U test for unmatched samples. Pre-post difference in flexibility/range of motion was assessed using the Wilcoxon Signed Ranks test for matched samples. Spearman’s Rank Order Correlation analysis was performed to assess correlations between participant characteristics and the change in flexibility following intervention. Post-intervention toe touch distance increased significantly following neural mobilization (median change = 22.5 mm; p < 0.01) and static hamstring stretching (median change = 25.0 mm; p < 0.01). There was no significant difference between the effects of either intervention on toe touch distance. A single session of neural mobilization produces a similar increase in toe touch distance to static hamstring range of motion, suggesting that neural tension may be a factor influencing multijoint range of motion.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证。