国际标准期刊号: 2168-9806

粉末冶金与采矿学报

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • CAS 来源索引 (CASSI)
  • 哥白尼索引
  • 谷歌学术
  • 打开 J 门
  • Genamics 期刊搜索
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • 普布隆斯
  • 欧洲酒吧
分享此页面

抽象的

Al2O3 Inclusions in Powder Metallurgy Super Alloys: Deformation Mechanism and Quantitative Characterization

Yefei Feng

SEM and quasi-in situ Micronano-CT were used to evaluate the evolution law of the three-dimensional form and size of Al2O3 inclusions in FGH96 powder metallurgy superalloy during the hot iso-static pressing (HIP), hot extrusion (HEX), and hot isothermal forging (HIF) processes. Quantitative analysis was used to determine how inclusion size changed during several stages, characterise their three-dimensional (3D) morphology, and propose a deformation process [1]. According to the findings, the inclusions in the powder stage had a long stripe or plate-like form. Al2O3 inclusions were mechanically linked to the alloy matrix during HIP, and the matrix's chemical make-up, shape, and size were all left unaltered. Al2O3 inclusions were seen in HEX Shear stress caused the object to break and stretch into a chain shape [2]. The quantitative link between original inclusion size, extrusion ratio, and inclusion size after extrusion was determined. For the first time during HIF, the relationship between a single inclusion's 3D shape, size, orientation, and deformation during forging compression was quantitatively described by quasi in-situ micronano-CT. The aforementioned evolution law offers a conceptual framework and practical support for raising the powder turbine disk's purity level.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证。