国际标准期刊号: 2168-9806

粉末冶金与采矿学报

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • CAS 来源索引 (CASSI)
  • 哥白尼索引
  • 谷歌学术
  • 打开 J 门
  • Genamics 期刊搜索
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • 普布隆斯
  • 欧洲酒吧
分享此页面

抽象的

An Original Added Substance Producing Pressure Overmolding Process for Crossover Metal Polymer Composite Designs

Danish Kumar

Essence polymer mixes combining low viscosity, high strength mixes with largely ductile and tough essence have gained traction over the last many decades as featherlight and high- performance accoutrements for artificial operations. Still, the mechanical parcels are limited by the interfacial cling strength between essence and polymers achieved through bonds, welding, and face treatment processes. In this paper, a new manufacturing process combining cumulative manufacturing and contraction molding to gain cold-blooded essence polymer mixes with enhanced mechanical parcels is presented. Cumulative manufacturing enabled deposit of polymeric material with filaments in a destined pattern to form acclimatized charge or preform for contraction molding [1]. A grade 300 maraging sword triangular chassis is first fabricated using AddUp FormUp350 ray greasepaint bed system and contraction overmolded with additively manufactured long carbon fiber- corroborated polyamide-,6 (40 wt. CF/ PA66) preform. The fabricated mongrel essence polymer mixes showed high stiffness and tensile strength. The stiffness and failure characteristics determined from the uniaxial tensile tests were identified to a finite element model within 20 divagation. Fractographic analyses was performed using microscopy to probe failure mechanisms of the coldblooded structures.