国际标准期刊号: 2168-9806

粉末冶金与采矿学报

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • CAS 来源索引 (CASSI)
  • 哥白尼索引
  • 谷歌学术
  • 打开 J 门
  • Genamics 期刊搜索
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • 普布隆斯
  • 欧洲酒吧
分享此页面

抽象的

An Overview of the Mechanics of Disaster Rock Masses

Ismail Abiodun Lawal

Rock mass mechanics can be characterized into designing stone mass mechanics and calamity rock mass mechanics in light of science and application. They were developed in terms of their concept, object, scientific essence, and application. Disaster rock mass mechanics' meaning, research method, and theoretical framework were discussed. Fiasco rock mass mechanics is an unequivocally nonlinear discipline that is serious areas of strength for a to concentrate on regular and misleadingly prompted calamities. In its critically unstable state, the rock mass system where disasters occur exhibits extreme spatial and temporal nonlinearity. Therefore, a statistical analysis of highly probable events is necessary for disaster prediction and forecasting to be effective. Finding the quantitative or semi-quantitative relationship between physical and biological information and the instability of rock mass systems could be the direction of disaster prediction efforts.

For a deep geological repository of high-level radioactive waste, the mechanical behavior of the host rock is crucial to its isolation as a natural barrier in the multi-field coupling environment. For a superior comprehension of stone in China's Beishan pre-chosen region for geographical removal of significant level radioactive waste, a progression of examinations were completed on in-situ pressure field of rock mass at profundity, strength and misshapening qualities of rocks under various pressure and temperature conditions, and rock boreability and flexibility to Passage Exhausting Machine (TBM) innovation. The findings indicate that Beishan granite is suitable for geological disposal because it possesses the typical characteristics of a hard, brittle rock with a low permeability. In the interim, another stone mass appropriateness assessment framework was proposed, and the stone mass fundamentally made out of Beishan rock was shown to be reasonable for geographical removal. Additionally, the constructability of Beishan stone at designing scale was tried and confirmed through field tests in the Beishan Investigation Passage (BET). In this section, we present the most recent developments in the Beishan underground research laboratory (URL) for geological disposal as well as a summary of the main findings of rock mechanics research on Beishan granite over the past few years.