国际标准期刊号: 2157-7617

地球科学与气候变化杂志

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • CAS 来源索引 (CASSI)
  • 哥白尼索引
  • 谷歌学术
  • 夏尔巴·罗密欧
  • 在线访问环境研究 (OARE)
  • 打开 J 门
  • Genamics 期刊搜索
  • 期刊目录
  • 乌尔里希的期刊目录
  • 访问全球在线农业研究 (AGORA)
  • 国际农业与生物科学中心 (CABI)
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • 普罗奎斯特传票
  • SWB 在线目录
  • 普布隆斯
  • 欧洲酒吧
  • ICMJE
分享此页面

抽象的

Application of Artificial Neural Network for Groundwater Level Simulation in Amritsar and Gurdaspur Districts of Punjab, India

Lohani AK and Krishan G

In this paper, the most stable and efficient neural network configuration for predicting groundwater level in Amritsar and Gurdaspur districts of Punjab, India is identified. For predicting the model efficiency and accuracy, different types of network architectures and training algorithms are investigated and compared. It has been found that accurate predictions can be achieved with a standard feed forward neural network trained with the Levenberg–Marquardt algorithm providing the best results. Good estimation of groundwater level can be achieved by dividing the boreholes/observation wells into different groups of data and designing distinct networks which is validated by the ANN technique and the degree of accuracy of the ANN model in groundwater level forecasting is within acceptable limits. The ANN method has been found to forecast groundwater level in Amritsar and Gurdaspur districts of Punjab, India.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证。