国际标准期刊号: 2155-6199

生物修复与生物降解杂志

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • CAS 来源索引 (CASSI)
  • 哥白尼索引
  • 谷歌学术
  • 夏尔巴·罗密欧
  • 打开 J 门
  • Genamics 期刊搜索
  • 学术钥匙
  • 期刊目录
  • 研究圣经
  • 中国知网(CNKI)
  • 乌尔里希的期刊目录
  • 访问全球在线农业研究 (AGORA)
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • SWB 在线目录
  • 普布隆斯
  • 日内瓦医学教育与研究基金会
  • 米亚尔
  • ICMJE
分享此页面

抽象的

Application of Microbial Culture and Rhamnolipid for Improving the Sedimentation of Oil Sand Tailings

Soroor Javan Roshtkhari and Catherine N Mulligan

Densification of oil sand tailings deposited in the tailing ponds and recovering water from them are two major challenges in the oil sands surface mining industry. A small increase in the tailings settlement rate (which normally is very slow) can improve the densification of tailings and significantly reduce water consumption and the volume of the tailing ponds. In this work, the objective was to evaluate the role of a mixed culture of two microbial strains isolated from weathered oil and rhamnolipid (JBR 425) together with these strains in the sedimentation of fine tailing particles. It has been found that a mixed culture of two microbial strains isolated from weathered oil increased the sedimentation. Rhamnolipid (0.5%) together with these two microbial strains at 15°C ± 2°C showed significant increases in sedimentation (by a factor of 5.1), the concentration of larger particles (by a factor of 2.63), the particle mean diameter (by a factor of 2.70) and flocculation in the tailings samples compared to the control while the zeta potential is still negative. This means that the mechanism of flocculation is probably due to increasing the hydrophobicity of the particles, interaction of biosurfactant and high molecular weight microbial organic compounds through a bridging mechanism with clay particles. This work shows the potential of using rhamnolipid and microbial culture in order to increase the oil sand sedimentation through flocculation and microbial activity in a more environmentally friendly densification process.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证。