国际标准期刊号: 2155-6199

生物修复与生物降解杂志

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • CAS 来源索引 (CASSI)
  • 哥白尼索引
  • 谷歌学术
  • 夏尔巴·罗密欧
  • 打开 J 门
  • Genamics 期刊搜索
  • 学术钥匙
  • 期刊目录
  • 研究圣经
  • 中国知网(CNKI)
  • 乌尔里希的期刊目录
  • 访问全球在线农业研究 (AGORA)
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • SWB 在线目录
  • 普布隆斯
  • 日内瓦医学教育与研究基金会
  • 米亚尔
  • ICMJE
分享此页面

抽象的

Assessing Long Term Effects of Bioremediation: Soil Bacterial Communities 14 Years after Polycyclic Aromatic Hydrocarbon Contamination and Introduction of a Genetically Engineered Microorganism

Xiaoci Ji, Steven A Ripp, Alice C Layton, Gary S Sayler and Jennifer M DeBruyn

Environmental contamination by organics such as polycyclic aromatic hydrocarbons (PAHs) generally changes native microbial communities. However our understanding of microbial responses has been limited to short term studies (i.e., less than 2-3 years) so long term community responses are not as well understood. In 1996, the genetically engineered microorganism Pseudomonas fluorescens HK44 was released into polycyclic aromatic hydrocarbon (PAH)-contaminated soil in lysimeters to monitor in situ PAH-biodegradation.

The objective of this study was to assess the long term impacts of PAH contamination and addition of HK44 on the indigenous soil bacterial community structure. In 2010, 14 years after the lysimeter experiment initiation, lysimeters were unsealed and sampled. Although PAHs were degraded and PAH concentrations fell below detectable levels within approximately the first two years of this experiment, lysimeters that had received PAHs had significantly higher soil organic matter content (1.30 ± 0.23%) than control lysimeters with clean soils (0.81 ± 0.08%). Pyrosequencing of 16S rRNA gene amplicon libraries revealed a distinct bacterial community structure in the lysimeters that had received PAHs. In contrast, there were no discernible differences in soil chemistry or bacterial community structures in lysimeters where HK44 was inoculated compared to those to which HK44 was not inoculated. These results indicate that although the initial perturbations are no longer detectable, the addition of PAHs had long term influences on the bacterial communities, while the introduction of the genetically engineered microorganism HK44 did not.