国际标准期刊号: 2157-7625

生态系统与生态学杂志

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • CAS 来源索引 (CASSI)
  • 哥白尼索引
  • 谷歌学术
  • 夏尔巴·罗密欧
  • 在线访问环境研究 (OARE)
  • 打开 J 门
  • Genamics 期刊搜索
  • 乌尔里希的期刊目录
  • 访问全球在线农业研究 (AGORA)
  • 电子期刊图书馆
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • SWB 在线目录
  • 虚拟生物学图书馆 (vifabio)
  • 普布隆斯
  • 日内瓦医学教育与研究基金会
  • 欧洲酒吧
分享此页面

抽象的

Assessment of Levee Erosion Using Image Processing and Contextual Cueing

Mehdi Khazaeli, Leili Javadpour, Hector Estrada and Ali Takbiri-Borujeni

Soil erosion is one of the most severe land degradation problems afflicting many parts of the world where topography of the land is relatively steep. Due to inaccessibility to steep terrain, such as slopes in levees and forested mountains, advanced data processing techniques can be used to identify and assess high risk erosion zones. Unlike existing methods that require human observations, which can be expensive and error-prone, the proposed approach uses a fully automated algorithm to indicate when an area is at risk of erosion; this is accomplished by processing Landsat and aerial images taken using drones. In this paper the image processing algorithm is presented, which can be used to identify the scene of an image by classifying it in one of six categories: levee, mountain, forest, degraded forest, cropland, grassland or orchard. This paper focuses on automatic scene detection using global features with local representations to show the gradient structure of an image. The output of this work counts as a contextual cueing and can be used in erosion assessment, which can be used to predict erosion risks in levees. We also discuss the environmental implications of deferred erosion control in levees.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证。