国际标准期刊号: 2469-9764

工业化学:开放获取

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • 哥白尼索引
  • 谷歌学术
  • 参考搜索
  • 研究期刊索引目录 (DRJI)
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • 学者指导
  • 日内瓦医学教育与研究基金会
  • 欧洲酒吧
分享此页面

抽象的

Asymmetric metal-catalyzed C-H bonding of alkenes:

Radhey Srivastava

The central significance of organ nitrogen mixes, particularly amine subsidiaries, as both manufactured intermediates and valuable final results gives a ground-breaking motivating force to create productive, specific, and practical strategies for the arrangement of C-N securities from plentiful feed stocks. The developing capacity of progress metal mixes to enact and change C-H and C-C obligations of hydrocarbons offers new open doors for the advancement of metal catalyzed C-N bond-shaping responses. The disclosure and improvement of new, artificially valuable metal-catalyzed hydrocarbon nitrogenation responses will be enormously encouraged by clarifying the reactivity of organonitrogen-metal edifices toward unsaturated and immersed hydrocarbons. The Chiral variant of amines is an incredible pharmacophores for characterizing new drug medicates however maybe this isn't unexpected because of their high thickness of auxiliary data which is increased by their inclination for hydrogen bond arrangement. Progress metal-catalyzed hilter kilter allylic amination (AAA) have been accounted for. Among those Pd-and Ir-reactant strategies discovered to be the most widely recognized utilizing essentially pre-functionalized olefins, for example, allyl halides and allyl acetic acid derivations (nucleophilic allylic replacements) and basic olefins (allylic C-H amination). These strategies however find reasonable applications in the manufactured science, a large portion of them endure because of the necessity of olefin pre-functionalization and side-effects, for example, salts. To beat the current impediments, the more efficient and valuable synergist allylic C-H amination of basic olefins is required. As of late we have gained ground in creating copper-catalyzed awry allyl amination of alkenes utilizing aryl hydroxylamine as nitrogen section contributors, which have not been accounted for up until now. The consequence of this investigation will shape the topic of the current talk.