我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

抽象的

Atherosclerosis by Targeting the Mitochondria-Inflammation Circle

Jihong Han

The mitochondrial redox equilibrium of endothelial cells (ECs) may become disturbed, which may result in persistent inflammation and atherosclerosis. Oxidative damage can cause endothelial dysfunction, and chronic sympathetic hyperactivity can make it worse. By reducing mitochondrial reactive oxygen species (ROS)-induced inflammation, we investigated whether renal denervation (RDN), a method for lowering sympathetic tone, could protect ECs from atherosclerosis.
ApoE-deficient (ApoE/-) mice underwent RDN or a sham procedure prior to consuming a high-fat diet for 20 weeks. The mitochondrial morphology, atherosclerosis, and EC phenotype were all found. Norepinephrine treatment of human artery ECs was used in vitro to investigate the underlying mechanisms of RDN-repressed endothelial inflammation. In EC mitochondria, RDN reduced oxidative stress, inflammation, and atherosclerosis. The amount of norepinephrine in the blood and the activity of the enzyme monoamine oxidase A (MAO-A) were both increased as a result of the persistent sympathetic hyperactivity impeded MAO-The development of atherogenic and proinflammatory particles was expanded in ECs because of ROS development and NF-B actuation brought about by the enactment of mitochondrial homeostasis. With the aid of NF-B and oxidative stress, it also inhibited PGC-1, a regulator of mitochondrial function. By disrupting the positive feedback regulation between mitochondrial dysfunction and inflammation brought on by RDN’s inactivation of MAO-A, EC atheroprone phenotypic changes and atherosclerosis were prevented.