国际标准期刊号: 2155-6199

生物修复与生物降解杂志

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • CAS 来源索引 (CASSI)
  • 哥白尼索引
  • 谷歌学术
  • 夏尔巴·罗密欧
  • 打开 J 门
  • Genamics 期刊搜索
  • 学术钥匙
  • 期刊目录
  • 研究圣经
  • 中国知网(CNKI)
  • 乌尔里希的期刊目录
  • 访问全球在线农业研究 (AGORA)
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • SWB 在线目录
  • 普布隆斯
  • 日内瓦医学教育与研究基金会
  • 米亚尔
  • ICMJE
分享此页面

抽象的

Augmenting Composting Microbial Community with Thermophilic Cellulolytic Organisms for Enhanced Degradation of Phenolic Compoundsin Creosote Treated Wood Waste

Abdel E Ghaly, Deepika Dave and Bopeng Zhang

Creosote is widely used as a wood preservative in railway sleepers, utility poles, bridges, building foundations, fences, stakes for vegetables and fruits, garden furniture and outdoor recreational facilities. Contamination of soil and water and threat to human and animals health are the major constraints to disposal of creosote-treated wood waste. Composting provides a treatment option for creosote-treated wood waste and production of a value- added product. The aim of this study was to test the effectiveness of inoculating the composting process with three thermophilic-cellulolytic microorganisms ( T. curvata , T. aurantiacus and T. fusca ) in degrading phenols in creosote treated wood waste. Used cooking oil was added into the composting system as a bio-available carbon source. The temperature, pH, moisture content, solids, total carbon, nitrogen, phenols, cellulose and lignin were monitored. The temperature profiles showed that the thermophilic phase (>45 ?C) was achieved and successfully maintained due to the addition of used cooking oil. The moisture content decreased because the water produced by microbial respiration did not compensate for the water vapour lost with the exhaust gases. The breakdown of organic nitrogen to ammonium caused an initial increase in the pH which was then decreased due to the formation of organic acids from the decomposition of fats and the loss of ammonia with the exhaust gases. The inoculated experiments achieved higher reductions in volatile solids, total carbon, TKN, phenols, cellulose and lignin compared to the control. Different degradation rates were observed in the psychrophilic, mesophilic and thermophilic stages of composting. The product from the inoculated experiment had improved stability and phytotoxicity compared to that of the control (uninocualted). The inoculation of thermophilic-cellulolytic microorganisms ( T. curvata , T. aurantiacus and T. fusca ) accelerated the composting process and resulted in higher degradation of phenolic compounds, lignocellulose and lignin.