国际标准期刊号: 2168-9806

粉末冶金与采矿学报

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • CAS 来源索引 (CASSI)
  • 哥白尼索引
  • 谷歌学术
  • 打开 J 门
  • Genamics 期刊搜索
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • 普布隆斯
  • 欧洲酒吧
分享此页面

抽象的

AVIRIS-NG Hyperspectral and Field Spectroscopy Data are Used to Map Vegetation Health Conditions and Assess the Environmental Impact of Coal Mining Sites

Fernandez Esteban

Using high-resolution airborne hyperspectral AVIRIS-NG imagery and validated field spectroscopy-based vegetation spectral data, this paper focuses on VHC assessment and mapping. For the purpose of a fine-grained geoenvironmental impact assessment, it also quantified the impact of mining on vegetation health. For VHC assessment and mapping in coal mining sites, we have developed and modified vegetation indices (VIs)-based models in this study. In order to identify suitable VIs, we used thirty narrow-banded VIs based on statistical measurement. For the VIs combined pixels analysis, the indices with the highest Pearson's r, R2, and lowest RMSE, as well as the P values, were used. The most elevated unique (Sound versus undesirable) vegetation blend record (VCI) has been chosen for VHC evaluation and planning. The ENVI (software) forest health tool and Spectral-based SAM classification results have also been contrasted with VIs model-based VHC results. The largest difference between the other VCI and the first VCI result was 72.07 percent. The results of the VHC showed that healthy vegetation classes are farther away from mine sites than unhealthy vegetation classes are. It is likewise seen that there is an exceptionally critical positive relationship (R2 =0.70) between VHC classes and distance from mines. The geo-environmental impact assessment of coal mining sites will be guided by these findings.

MiSeq high-throughput sequencing technology was used to examine the changes in soil microbial community diversity and its influence on environmental factors following five years of restoration in an alpine mining area using various soil overburden thicknesses in this study. The findings demonstrated that, under various soil overburden thicknesses, vegetation restoration clearly altered the species composition of soil microorganisms at the OTU (Operational Taxonomic Unit) level. Additionally, the OTU species of soil fungi and bacteria significantly changed in the 15 cm soil overburden thickness. In all three soil overburden thicknesses, the bacterial diversity index was higher than the fungal diversity index, and the microbial diversity index was significantly higher than the bacterial diversity index without the soil overburden thickness (P 0.05). Soil fungi and bacteria shared nearly identical genera and phyla. The microbes were Proteobacteria, Pseudoarthrobacter, and Sphinomonas, and the growths were Ascomycota and Tricharina. The soil overburden thickness affected the relative abundance of soil bacteria and fungi. Vegetation level, inclusion, greenery inclusion, soil temperature, dampness, natural matter, nitrogen content,pH, and soil overburden thickness were the key variables influencing the dirt microbial local area structure. In alpine mining areas, the ideal soil reconstruction measure was a soil overburden thickness of 10 cm. During the rebuilding time of the coal gangue hill in the snow capped locale, critical improvement was seen in the responsiveness of soil microorganisms to thickness throughout the span of five years. In any case, to work with the persistent rebuilding of microorganisms, it is prescribed to carry out measures like covering the region with non-woven textures and changing the pH of the dirt to make better circumstances for microbial development.