国际标准期刊号: 2155-6199

生物修复与生物降解杂志

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • CAS 来源索引 (CASSI)
  • 哥白尼索引
  • 谷歌学术
  • 夏尔巴·罗密欧
  • 打开 J 门
  • Genamics 期刊搜索
  • 学术钥匙
  • 期刊目录
  • 研究圣经
  • 中国知网(CNKI)
  • 乌尔里希的期刊目录
  • 访问全球在线农业研究 (AGORA)
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • SWB 在线目录
  • 普布隆斯
  • 日内瓦医学教育与研究基金会
  • 米亚尔
  • ICMJE
分享此页面

抽象的

Batch Equilibrium and Kinetic Studies of Simultaneous Adsorption and Biodegradation of Naphthalene by Orange Peels ImmobilizedPseudomonas aeruginosa NCIB 950

Samuel E. Agarry and Mujidat O. Aremu

The batch simultaneous adsorption and biodegradation (SAB) of naphthalene in synthetic naphthalene waste water by orange peels immobilized Pseudomonas aeruginosa NCIB 950 has been studied under different process conditions. Different orange peels particle sizes (0.125, 0.178 and 0.422 mm) were used as adsorbent and support matrix for the batch equilibrium adsorption-biodegradation studies; while different initial naphthalene concentrations (10 – 50 mg/l) and pH (5, 7 and 9) were used for the batch kinetic studies. The results of the batch equilibrium adsorption-biodegradation studies revealed that adsorption-biodegradation capacity decreased with increase in particle size. The equilibrium adsorption-biodegradation data were analyzed by the Langmuir, Freundlich and Redlich-Peterson models of adsorption. The results showed that the equilibrium data for naphthalene degradation sorbent systems were well fitted to the three adsorption models with Redlich-Peterson adsorption isotherm having the best fit. The adsorption-biodegradation kinetic data obtained at different initial naphthalene concentrations and pH showed that the adsorption-biodegradation capacity of orange peels immobilized P. aeruginosa increased with increase in initial naphthalene concentration and pH. The kinetic data were analyzed using Lagergren pseudo-first order, Elovich and intra particle diffusion rate equations. The rate equations fitting showed that the adsorption- biodegradation kinetic data generally fitted the three rate equations tested from which the rate constants and diffusion rate constants were estimated. However, the Lagergren pseudo first-order rate equation gave the best fit and, thus the process followed first-order rate kinetics. Adsorption studies have also been done separately to compare the efficiency of SAB over adsorption. Therefore, orange peels being an agricultural waste product have the potential to be used as low-cost adsorbent and support matrix for microbial culture immobilization for the removal of organic pollutant from waste water.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证。