国际标准期刊号: ISSN 2472-0518

石油与天然气研究

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

抽象的

Bio refinery approach of microalgae feedstock for the production of bioethanol and biodiesel.

Ramachandran Sivaramakrishnan

The continued use of fossil fuels depletes the reserves; more than 75% of petroleum based fuels are burnt in the transportation sector. The utilization of global energy is expected to be increased in the future due to increased population and demand. Therefore, there is a need for alternative fuel, which is not only satisfying the need, but also solving the environmental problems. Microalgae feedstocks, a reliable biofuel source, have drawn much attention as an alternative and renewable. This is due to the microalgal species have the excellent photosynthetic efficiencies and the biomass reproducibility potential than any other terrestrial crops. In this study the integrated approach of ethanol and biodiesel production from algal biomass has been proposed. This integrated method is to develop the microalgae based bio refinery model. The present study focuses on the bio refinery approach of integrated production of bioethanol and biodiesel from microalgae feedstock. Various pretreatment methods were used to determine the maximum recovery of sugars from Scenedesmus sp. The total sugar yield of 84% was obtained when pretreated separately by acid hydrolysis. The hydrolysate produces 90% of ethanol (theoretical yield) after the fermentation. Enzyme catalyzed ultrasound assisted direct transesterification of biomass was performed and the maximum of 91% methyl ester yield, 2.6% glycerol carbonate and 5.6% glycerol dicarbonate was obtained. The integrated process of initial acid hydrolysis produces 84% of total sugar. The sugar extracted biomass was initiated with enzyme catalyzed direct transesterification with ultrasound irradiation. The obtained hydrolysate was further fermented with S. cerevisiae and at the optimized conditions of fermentation 90% of ethanol (theoretical yield) was obtained. The conditions of direct transesterification using enzyme were optimized and produces 89% of biodiesel yield with 2.1% glycerol carbonate and 4.9% glycerol dicarbonate. Thus, the microalgal biomass efficiently produces both ethanol and biodiesel as well glycerol carbonate, which could be the biorefinery model for sustainable future development.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证。