开放获取期刊获得更多读者和引用
700 种期刊 和 15,000,000 名读者 每份期刊 获得 25,000 多名读者
Mousa Wang
As a byproduct of industrialised production and chemical reactions, phenol is significant worry pollution. Using the recently discovered plant growth-stimulating bacteria C. flaccumfaciens, the kinetics of phenol's growth and biodegradation were first studied. Haldane's growth kinetics inhibition coefficient, half-saturation coefficient, and maximum specific growth rate for phenol-dependent growth kinetics were each determined using the Haldane inhibition model. The Haldane equation is ideally suited to empirical data with a sum of squared error [1]. Trends in phenol biodegradation are also correctly predicted by the enhanced Gombertz model [2]. As the initial phenol concentrations were raised, so did the rate of phenol biodegradation and the lag time [3]. At an incubation temperature of 28 C, C. flaccumfaciens growth and phenol biodegradation were most successful [4].