我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

抽象的

Biodegradation of Biodegradable Polymers

Abdu Rozaik

In order to make biodegradable polymers simpler to dispose of after use without affecting the environment, researchers are becoming more interested in creating them through chemical processing, microbes, and enzymes. Biodegradable polymers encountered a number of problems as they progressed towards becoming useful materials. The handling of biodegradable polymers, composites, mixing, and modelling are all discussed in this article. Biodegradable polymer evaluation and environmental destiny are covered in depth. Investigations are made into the forensic engineering of biodegradable polymers and the connections between their structure, characteristics, and behaviour before to, during, and following practical uses.

Finding methods to reduce plastic pollution has emerged as one of the major issues facing modern society. A few alternatives have the potential to modify the way we think about and use plastics in ways that are more circular and sustainable. One workable solution to the drawbacks of using and disposing of non-biodegradable polymers is the development of biodegradable polymers from fossil and bio-based sources. The polymer characteristics, environmental circumstances, microorganisms, and associated enzymes all have a role in the biodegradation process, which is dependent on all of these variables. As a result, biodegradation times and rates can vary greatly. With a focus on the mesophilic range, this review seeks to give background information and a thorough, methodical, and critical assessment of this complex process. Discussions include extracellular enzyme activity towards depolymerization, the impact of biofilm on the dynamics of the degradation process, the evolution of CO2 as a measure of the degree of biodegradation, and metabolic pathways. With a focus on the current knowledge gaps, suggestions and perspectives for prospective future study are offered with the intention of minimising the persistence of plastics across habitats. Modern techniques that require faster development include bio-stimulation, bio-augmentation, the addition of natural and/or engineered enzymes, and the addition of specialised substances to cause de-polymerization under specified circumstances. Methods also need to be linked to techniques and standards that thoroughly monitor the biodegradation process [1-5].