我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • 哥白尼索引
  • 谷歌学术
  • 打开 J 门
  • Genamics 期刊搜索
  • 学术钥匙
  • 安全点亮
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • 普布隆斯
  • ICMJE
分享此页面

抽象的

BioDensity: A Novel Resistance Training Approach and Learning Effects in 1,685 Males and 2,689 Females

Derek T Smith, Rebecca A Moynes, Shawn S Rockey, Jason Conviser and James S Skinner

Traditional Resistance Training (RT) using free-weights or cable-pulley machines has well-documented health, rehabilitation, and activity of daily living benefits. RT is commonly prescribed for primary/secondary prevention of osteoporosis, sarcopenia, cardiopulmonary diseases, and balance/locomotion impairments. Insuring safety and efficacy of RT programs often requires supervision and can be costly and time intensive. Technology is constantly reshaping modes and RT, and in 2009, bioDensity™ was developed and marketed internationally. Developing a safe and efficacious mode of RT that induces multiple body weight loading to the musculoskeletal system underpinned bioDensity™ development. High-intensity loading is one mechanism to induce therapeutic bone remodeling which is foundational to attenuating osteopenia and osteoporosis. With traditional RT, it is difficult to safely elicit high osteogenic loads (multiples of body weight), and for at-risk populations, moving such loads through a full range of motion may not be possible or prudent. BioDensity™ is novel and warrants researching for several reasons. It is lowvolume: four exercises, once per week, 5-seconds per contraction (low time commitment). It is high-intensity: users exert voluntary-maximal force for each exercise and exercises target common osteoporosis sites. Safety is achieved through individualized positioning that is near optimal joint angles for maximal force production. Force is generated through a limited-range – approximately 5 cm – and is measured via load cells and patented software. Users receive real-time visual feedback about force generation to promote and prompt a maximal effort during subsequent training sessions. The potential implications and applications of bioDensity™ RT are broad and clinically-significant; however this methodology has not been introduced to the scientific/clinical communities to generate rigorous research. Accordingly, the purpose of this communication was to first introduce this novel mode of RT and then report on a large cross-sectional data set that informed recommendations for handling sex-difference learning effects inherent with this unfamiliar mode of RT.