国际标准期刊号: 2155-6199

生物修复与生物降解杂志

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • CAS 来源索引 (CASSI)
  • 哥白尼索引
  • 谷歌学术
  • 夏尔巴·罗密欧
  • 打开 J 门
  • Genamics 期刊搜索
  • 学术钥匙
  • 期刊目录
  • 研究圣经
  • 中国知网(CNKI)
  • 乌尔里希的期刊目录
  • 访问全球在线农业研究 (AGORA)
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • SWB 在线目录
  • 普布隆斯
  • 日内瓦医学教育与研究基金会
  • 米亚尔
  • ICMJE
分享此页面

抽象的

Biodiesel Fuels' Half-Lives of Biodegradation in Terrestrial and Aquatic Systems: A Review

Arun Kumar

It is essential to have knowledge of the biodegradation kinetics of biodiesel fuels while choosing the best remediation tactics and doing risk and impact assessments. However, there is a lack of consistency in this information, and we still don't fully understand what causes variation in biodegradation rates. In order to determine the 142 biodegradation and 56 mineralization half-lives of diesel and biodiesel fuels in diverse experimental setups, we thoroughly analysed 32 scientific literature sources. Using sets of averaged half-life values and their statistical uncertainty, the analysis focused on the variation in half-lives among fuels and experimental settings. Biodegradation half-lives varied from 9 to 62 days across all data sites and were 2-5.5 times shorter than mineralization half-lives. In terrestrial environments, biodegradation and mineralization half-lives were 2.5–8.5 times longer for all fuels than in aquatic systems. a system of water. Although discrepancies in the quantity of data points from separate studies obscured differences in half-lives between different fuels, the half-lives were generally shorter for blends with greater biodiesel concentration. The kind of mixes and experimental system did not, in the majority of cases, have statistically significant effects on biodegradation half-lives. While more research is necessary to define the rates of biodegradation in anaerobic environments, our data can be utilised to better characterise the dangers and effects of biodiesel fuels in aerobic aquatic and terrestrial habitats. Due to its relatively high biodegradability, biodiesel fuels may benefit from remediation techniques that use monitored natural attenuation and other passive methods to degrade and disperse contaminants in their natural environments.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证。