国际标准期刊号: 2155-952X

生物技术与生物材料

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • 哥白尼索引
  • 谷歌学术
  • 夏尔巴·罗密欧
  • 打开 J 门
  • Genamics 期刊搜索
  • 学术钥匙
  • 研究圣经
  • 中国知网(CNKI)
  • 访问全球在线农业研究 (AGORA)
  • 电子期刊图书馆
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • SWB 在线目录
  • 虚拟生物学图书馆 (vifabio)
  • 普布隆斯
  • 日内瓦医学教育与研究基金会
  • 欧洲酒吧
  • ICMJE
分享此页面

抽象的

Bioethanol Production by an Ethanol-Tolerant Bacillus cereus Strain GBPS9 Using Sugarcane Bagasse and Cassava Peels as Feedstocks

Victor Ezebuiro, Chimezie Jason Ogugbue, Boma Oruwari and Francis Sopuruchukwu Ire

Bioethanol production potential of ethanol-tolerant Bacillus cereus strain GBPS9 using sugarcane bagasse and cassava peels as feedstocks was investigated. The Bacillus cereus GBPS9 used in this study was isolated from agro-wastes impacted soil and classified based on phylogenetic analysis of its 16S rRNA gene. The sequence of the isolate has been deposited in GenBank under the accession number KT318371.1. The isolate was selected based on its cellulolytic ability, tolerance to ethanol concentration of 6% (v/v) and ability to ferment sugar to ethanol. The substrates employed in the study were cassava peels and sugarcane bagasse. Chemical composition analysis showed total carbohydrate and lignin contents (% dry weight) of 69.6 ± 1.2 and 13.9 ± 0.4 for cassava peels and 70.3 ± 1.9 and 16.2 ± 1.2 for sugarcane bagasse, respectively. The feedstocks were subjected to acid, alkali and steam explosion pretreatments to increase cellulose content and therefore, reduce lignin content. The best pretreatment methods (steam explosion for sugarcane bagasse and acid for cassava peels) increased total carbohydrate contents to 85.4 ± 2.33 and 80.4 ± 2.5 for sugarcane bagasse and cassava peels, respectively. The respective lignin contents after pretreatment were 4.2 ± 0.44 and 4.8 ± 0.8 for sugarcane bagasse and cassava peels. Cultural conditions (pH, temperature, nitrogen source, inoculum size and substrate concentration) of the bacterium were optimized to enhance cellulase production. The laboratory scale fermentation of the feedstocks to ethanol was carried out in 250 mL Erlenmeyer flasks. Gas Chromatography – Mass spectrometry (GC-MS) analysis of the fermentation broth of sugarcane bagasse and cassava peels substrates revealed ethanol contents of 18.40 and 17.80 g/L, respectively. The study has demonstrated efficient bioethanol production by Bacillus cereus GBPS9 using sugarcane bagasse and cassava peels as feedstocks.