国际标准期刊号: 2155-6199

生物修复与生物降解杂志

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • CAS 来源索引 (CASSI)
  • 哥白尼索引
  • 谷歌学术
  • 夏尔巴·罗密欧
  • 打开 J 门
  • Genamics 期刊搜索
  • 学术钥匙
  • 期刊目录
  • 研究圣经
  • 中国知网(CNKI)
  • 乌尔里希的期刊目录
  • 访问全球在线农业研究 (AGORA)
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • SWB 在线目录
  • 普布隆斯
  • 日内瓦医学教育与研究基金会
  • 米亚尔
  • ICMJE
分享此页面

抽象的

Bioremediation of Hexadecane and Diesel Oil is Enhanced by Photosynthetically Produced Marine Biosurfactants

Alberto Rosales Morales, Paniagua-Michel J

In the coastal environment of the Todos Santos Bay (Ensenada BC, Mexico), the sport fishing dock is chronically polluted due to frequent anthropogenic activity. The presences of aliphatic hydrocarbons in surface hydrocarbon-rich wastewater from this Bay reflect the differences in industrial and domestic pollutant activities. In this research, the bioprospection and screening of indigenous microbial mats led to the isolation of a strain of Phormidium sp. able to produce marine surface-active biosurfactants, which in turn contributed to bioremediate the levels of hexadecane and diesel. Field studies could corroborate the bioremediation potential of this strain. Our studies demonstrated that the marine cyanobacteria Phormidium sp. remove hexadecane (45%) and diesel oil (37%) from aqueous phase when grown in real seawater enriched with nutrients and in presence of these hydrocarbons within 10 days. The partially purified surface-active agents produced by Phormidium biodisk contributed to enhance the removal potential of this strain for hexadecane and diesel. In axenic cultures, the monospecific cyanobacterium Phormidium structured in biodisks mats exhibited degradative capacity on hydrocarbons in the range of C10–C28 carbon atom number in autotrophic conditions.

The photoautotrophic growth of the biodisks of Phormidium has been registered by the presence of photosynthetically produced pigments markers, which partially are genre specific features, viz, phycocyanine, phycoerythrin as well as zeaxanthin and other important carotenoids and chlorophylls. Moreover, photosynthetically produced oxygen is believed played an important role in biodegradation of hexadecane and diesel oil. The obtained results indicate, a high removal potential of Phormidium and an environmental safe alternative for mitigating oil pollution seashores, by the joint action of photosynthetically produced exopolysaccharides type biosurfactants.