国际标准期刊号: 2155-6199

生物修复与生物降解杂志

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • CAS 来源索引 (CASSI)
  • 哥白尼索引
  • 谷歌学术
  • 夏尔巴·罗密欧
  • 打开 J 门
  • Genamics 期刊搜索
  • 学术钥匙
  • 期刊目录
  • 研究圣经
  • 中国知网(CNKI)
  • 乌尔里希的期刊目录
  • 访问全球在线农业研究 (AGORA)
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • SWB 在线目录
  • 普布隆斯
  • 日内瓦医学教育与研究基金会
  • 米亚尔
  • ICMJE
分享此页面

抽象的

Bioremediation of Methomyl by Soil Isolate - Pseudomonas aeruginosa

Amritha G Kulkarni and Kaliwal BB

Bioremediation is emerging as one of the most promising technology for the removal of xenobiotics. Bioremediation of xenobiotic compounds by microorganisms is a crucial phenomenon by which these compounds can be detoxified or removed from the environment, thus preventing pollution, where screening of the potential degrading organism is one of the key step. Methomyl belonging to N-methyl carbamate group of insecticide is the most commonly used pesticide on fruits and vegetables. It is classified as a toxic, hazardous and restricted use pesticide by the World Health Organization (WHO), European Commission (EC) and Environmental Protection Act (EPA). The present study is therefore aimed to isolate a soil bacterium, characterize the most potential degrader of methomyl and further determine the role of plasmid in bioremediation. Soil samples were collected from different areas around Karnatak University campus, Dharwad and inoculated in minimal medium containing methomyl (10-3 M). Morphological characteristics of ten isolates were studied and subjected to HPLC analysis where methomyl degradation (%) was observed. The most potential strain with the ability to degrade methomyl was inoculated in synthetic medium containing methomyl (10-3 M) for 96 hrs. This strain was further identified morphologically, biochemically and genetically. The results indicated that the isolated strain was gram -ve rods and biochemical characteristics showed that indole, methyl red, vogues prauskauer and H2S test was negative and citrate, catalase, gelatin hydrolysis and oxidase test was positive. The 16Sr DNA reports revealed that the accession number was G01801181 and showed 99% similarity to Pseudomonas aeruginosa. The present study on HPLC analysis at regular intervals of 24 hrs of the soil isolate - Pseudomonas aeruginosa in synthetic medium containing methomyl (10-3 M) incubated for 96 hrs revealed that there was a significant decrease in the methomyl content in the treated group when compared with the initial control demonstrating its potential use in bioremediation. The plasmid isolation and curing study confirmed that the genes of the plasmid of Pseudomonas aeruginosa are involved in the methomyl degradation and such plasmids could be used as recombinant DNA technology for bioremediation.