国际标准期刊号: 2161-0460

阿尔茨海默病和帕金森病杂志

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • 哥白尼索引
  • 谷歌学术
  • 夏尔巴·罗密欧
  • 打开 J 门
  • Genamics 期刊搜索
  • 学术钥匙
  • 期刊目录
  • 中国知网(CNKI)
  • 电子期刊图书馆
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • SWB 在线目录
  • 虚拟生物学图书馆 (vifabio)
  • 普布隆斯
  • 日内瓦医学教育与研究基金会
  • 欧洲酒吧
  • ICMJE
分享此页面

抽象的

Blockade of Lactate Transport in the Insular Cortex Impairs Reconsolidation, but not Retrieval, of Morphine-associated Memo ry and Prevents Subsequent Reinstatement

Yan Nie, He Ren, Jia-Rui Gu, Chong-Ran Sun, Yang Hui, Yong-Bin Jing and En-You Li

Drug-associated memories are critical for addictive behaviors, as these memories can trigger drug seeking and relapse by contextual cues. The transfer of lactate from astrocytes to neurons plays an important role in reward memory. Recently, studies have indicated that the insular cortex has a vital role in addictive procedure, which can be induced by contextual cues using both rat and human memory models. However, the neural locus in which the role of astrocyte–neuron lactate transport in long-term conditioning is required for reward memories is unclear. In investigating the involvement of insular astrocyte–neuron lactate transport in the processing of reward memory, using the conditioned place preference (CPP), we show that the local blockage of astrocyte–neuron lactate transport via the infusion of an inhibitor of glycogen phosphorylase (DAB) into the insular cortex impairs CPP expression of reconsolidation, but not extinction. Co-administering L-lactate and DAB confirmed that lactate could restore DABinduced memory deficit. The expression of c-fos in the insula cortex, the product of an immediate early gene, is also inhibited following memory reactivation. We found that the administration of DAB in the insula prior to reactivating the memory could inhibit the reconsolidation of reward memory, which could be reversed by the co-administration of DAB and L-lactate, and decrease the number of c-fos-positive cells. However, these treatments have no contribution to the extinction procedure, thereby indicating that the inhibitory contribution is reactivation dependent. Our results demonstrate that insular astrocyte–neuron lactate transport has a role in the processing of drug memory and that the blockage of insular astrocyte–neuron lactate transport could inhibit the reconsolidation of reward memory. This offers a novel therapeutic target to reduce the long-lasting conditioned responses to drug abuse.