国际标准期刊号: 2469-9764

工业化学:开放获取

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • 哥白尼索引
  • 谷歌学术
  • 参考搜索
  • 研究期刊索引目录 (DRJI)
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • 学者指导
  • 日内瓦医学教育与研究基金会
  • 欧洲酒吧
分享此页面

抽象的

Catalytic Reduction of 4-Nitrophenol Using Biogenic Silver Nanoparticles Derived from Papaya (Carica papaya) Peel extract

CH Prasad, K Srinivasulu and P Venkateswarlu

A facile and green method is described for the synthesis of Silver (Ag) nanoparticles (NPs) from the extract of Papaya Peel as capping and reducing agent. The green synthesized Ag NPs were characterized by diverse techniques such as powder X-ray diffraction (XRD), UV-visible, Fourier transform-infrared spectroscopy (FTIR) and Transmission electron microscopy (TEM) coupled with X-ray energy dispersive spectroscopy (EDS) techniques. These clearly reveal that the structure of the synthesized silver nanoparticles was face centered cubic. The nanoparticles obtained from Papaya Peel extract were spherical shape with an average diameter of 3-5 nm. Furthermore, the catalytic activity of synthesized Ag NPs in the reduction of 4-nitrophenol (4-NP) was studied by UVvis absorption spectroscopy. The synthesized Ag NPs have a good catalytic activity on the reduction of 4-nitrophenol (4-NP) by Papaya Peel extract which is confirmed by the decrease in absorbance maximum values of 4-nitrophenol (4-NP) with respect to time using UV-vis absorption spectroscopy. An efficient reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) in the presence of Ag NPs and NaBH4 was observed and was found to depend upon the nanoparticle size or the peel extract concentration used for synthesis.