我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

抽象的

Cellular Heterogeneity in Atherosclerosis: Unraveling Complexity and Guiding Therapeutic Strategies

Christie Stewart

Atherosclerosis, a chronic inflammatory disease of the arterial walls, is characterized by intricate cellular heterogeneity within the plaques. The identification of highly plastic and heterogeneous cell populations has added a layer of complexity to atherosclerosis research, challenging traditional cell markers used for plaque analysis. To overcome this, advanced techniques such as lineage tracing and single-cell omics have emerged, enabling a deeper understanding of different cell subsets and their functional roles. Moreover, technological advancements in lipidomics and metabolomics have provided insights into the molecular landscape of atherosclerosis, shedding light on metabolic adaptations and cellular plasticity in diseased arteries. These approaches hold potential for developing antigen-specific therapies by elucidating the adaptive immune response and identifying specific targets for intervention. The need for innovative therapeutic strategies is evident, as investment in cardiovascular drug development has lagged behind other areas of research. Targeting inflammatory responses driven by impaired immune cell activation is a promising avenue, either by focusing on specific immune cell subsets or their effectors. Additionally, site-specific therapies and timingoptimized strategies may enhance drug efficacy while minimizing side effects. Identifying key regulatory pathways controlling the phenotypic modulation of endothelial cells and vascular smooth muscle cells could pave the way for converting them into atheroprotective phenotypes. Furthermore, the integration of spatial omics techniques, protein profiling, and Mendelian randomization can provide valuable insights into the adaptive immune response, antigenspecific targets, and the potential effectiveness of pharmacological modifications. These multidimensional approaches offer the potential for personalized and targeted therapies against atherosclerosis. In conclusion, a comprehensive understanding of cellular heterogeneity, immune mechanisms, and metabolic adaptations in atherosclerosis is essential for the development of innovative therapeutic interventions. By unraveling the complexities of this disease, we can pave the way for precision medicine and improved management of atherosclerosis, thus alleviating the global burden of cardiovascular disease.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证。