开放获取期刊获得更多读者和引用
700 种期刊 和 15,000,000 名读者 每份期刊 获得 25,000 多名读者
Qinshua Zhang
This study presents a novel approach to address both environmental and resource challenges by recycling Fe3O4 nanomaterial from coal fly ash as an efficient catalyst for the development of a green and sustainable bio-electro Fenton process. The Fe3O4 nanocatalyst is synthesized and thoroughly characterized using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and Fourier-transform infrared spectroscopy. Through a systematic optimization process employing response surface methodology, key parameters for the bio-electro Fenton reaction, including pH, current density, catalyst dosage, and initial pollutant concentration, are identified and refined [1]. The performance of the Fe3O4 nanocatalyst in the bio-electro Fenton reaction is rigorously evaluated, demonstrating impressive pollutant degradation efficiency, kinetics, and mineralization. The environmental and practical implications of this innovative approach are discussed, showcasing its potential as a sustainable and cost-effective solution for advanced wastewater treatment. This study not only offers insights into utilizing waste-derived nanomaterials for catalytic applications but also contributes to the broader goal of achieving cleaner water resources and a greener future [2].