国际标准期刊号: 2157-7617

地球科学与气候变化杂志

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • CAS 来源索引 (CASSI)
  • 哥白尼索引
  • 谷歌学术
  • 夏尔巴·罗密欧
  • 在线访问环境研究 (OARE)
  • 打开 J 门
  • Genamics 期刊搜索
  • 期刊目录
  • 乌尔里希的期刊目录
  • 访问全球在线农业研究 (AGORA)
  • 国际农业与生物科学中心 (CABI)
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • 普罗奎斯特传票
  • SWB 在线目录
  • 普布隆斯
  • 欧洲酒吧
  • ICMJE
分享此页面

抽象的

Climate Change Indicators: Tools for Identification of Climate Change Vulnerability at Central Ethiopia

Mengistu Tilahun, Megersa Tefesa, Tade Girma, Misganawu Milkiyas, Hana Tamirat

Droughts and floods have major environmental, social and economic repercussions. Climate change leads to recurrent droughts and floods in different parts of Ethiopia. Therefore, this study was aimed to characterize trends of climate change indicators (temperature, rainfall, drought, and flood). The study was conducted in the Salale zone, Oromia region Ethiopia. Thirty (30) years of climate data (maximum temperature, minimum temperature, and rainfall) from 1990-2019 was used to forecast climate variables. The precipitation/evaporation index was used to identify droughtprone areas. The flood-prone areas were identified using slope and rainfall distribution over main rivers. R statistical software, T-R, and Arc Map were used for data analysis. Accordingly, Sululta will receive higher annual rainfall, which is 1232.82 mm explicitly during the end term (2070-2099). The lowest annual rainfall will be scored at Sheno which is 594.04 mm during the near term (2020-2039). The projection of maximum temperature showed that there will be an increase of maximum temperature by 3.83°C and minimum temperature by 4.27°C in the future up to 2099. The highest maximum temperature will be scored at Ghatsion station, which will be 29.6°C in the end term and the lowest minimum temperature will be recorded at Sheno station which will be 8.1°C in the near term. Areas with low rainfall and high temperature were identified as prone to drought, which indicates high evaporation after low precipitation/rainfall specifically low precipitation/evaporation (P/E) index. Areas found around flat land with main rivers and receive high rainfall are more prone to flooding occurrences.