我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • CAS 来源索引 (CASSI)
  • 哥白尼索引
  • 谷歌学术
  • 夏尔巴·罗密欧
  • 在线访问环境研究 (OARE)
  • 打开 J 门
  • 学术钥匙
  • 期刊目录
  • 访问全球在线农业研究 (AGORA)
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • 学者指导
  • SWB 在线目录
  • 普布隆斯
  • 欧洲酒吧
分享此页面

抽象的

Cluster and Principal Component Analysis among Bread Wheat (Triticum Aestivum L) Genotypes in Mid Rift Valley of Oromia, Ethiopia

Urgaya Balcha, Firew Mekbib, Dagnachew Lule

Cluster and principal component analysis techniques are suitable in identification plant traits separately and it helps breeders to genetic improvement of traits in bread wheat genotypes. This research was conducted at Adami Tulu, mid rift valley of Oromia, Ethiopia, with the objectives of studying the extent of clustering of bread wheat genotypes and identifying the important traits in distinguishing the genotypes. A total of 36 breads wheat genotypes were evaluated in 6 × 6 simple lattice design during 2017-2018 cropping season. Analysis of variance showed the existence of highly significant (P ≤ 0.01) variation among genotypes for most of the studied traits. Cluster analysis revealed that the 36 breads wheat genotypes were grouped into 4 clusters. The Principal Component Analysis (PCA) showed that the first 7 principal components with Eigen values greater than one combined explained about 82.82% of the total variation. The study showed the presence of possibility of improving yield and other desirable characters through selection. However, this study was conducted for one growing season and therefore further testing in different locations for more than one cropping season is necessary.