国际标准期刊号: 2157-7617

地球科学与气候变化杂志

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • CAS 来源索引 (CASSI)
  • 哥白尼索引
  • 谷歌学术
  • 夏尔巴·罗密欧
  • 在线访问环境研究 (OARE)
  • 打开 J 门
  • Genamics 期刊搜索
  • 期刊目录
  • 乌尔里希的期刊目录
  • 访问全球在线农业研究 (AGORA)
  • 国际农业与生物科学中心 (CABI)
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • 普罗奎斯特传票
  • SWB 在线目录
  • 普布隆斯
  • 欧洲酒吧
  • ICMJE
分享此页面

抽象的

Comparison of MLP-ANN Scheme and SDSM as Tools for Providing Downscaled Precipitation for Impact Studies at Daily Time Scale

Hashmi MZ, Shamseldin AY and Melville BW

Statistical downscaling has become an important part in most of the watershed scale climate change investigations. It is usually performed using multiple regression-based models. Basic working principle of such models is to develop a suitable relationship between the large scale (predictors) and the local climatic parameters called predictands. The development of such relationships using linear regression becomes very challenging when the local parameter to be downscaled is complex in nature such as precipitation. For this reason, use of nonlinear data driven techniques including Artificial Neural Networks (ANNs) is becoming more and more popular. Therefore, an attempt has been made in the study presented here to introduce a new Multi-Layer Perceptron (MLP) ANN-based scheme to develop a robust predictors-predictand relationship to be used as a downscaling model at daily time scale. The efficiency of this model has been compared with a popularly used model called Statistical Down Scaling Model (SDSM), for daily precipitation at the Clutha watershed in New Zealand. The results show that the model developed based on ANN scheme exhibits better performance than the SDSM. Hence, it is concluded that the use of artificial intelligence techniques such as ANN can greatly help in developing more efficient predictor-predictand models for even for precipitation being the toughest climate variable to model