国际标准期刊号: 2155-9872

分析与生物分析技术杂志

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • CAS 来源索引 (CASSI)
  • 哥白尼索引
  • 谷歌学术
  • 夏尔巴·罗密欧
  • 学术期刊数据库
  • 打开 J 门
  • Genamics 期刊搜索
  • 期刊目录
  • 研究圣经
  • 中国知网(CNKI)
  • 乌尔里希的期刊目录
  • 电子期刊图书馆
  • 参考搜索
  • 研究期刊索引目录 (DRJI)
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • 学者指导
  • SWB 在线目录
  • 虚拟生物学图书馆 (vifabio)
  • 普布隆斯
  • 欧洲酒吧
  • ICMJE
分享此页面

抽象的

Comparison of Sampling Probe and Thermal Desorber in HAPSITE ER for Analysis of TO-15 Compounds

Jae Kwak, Maomian Fan, Brain A Geier, Claude C Grigsby and Darrin K Ott

The Hazardous Air Pollutants on Site (HAPSITE), a portable Gas Chromatograph-Mass Spectrometer (GCMS), has been used to detect, identify, and quantify Volatile Organic Compounds (VOCs) from environmental samples, providing on-site analysis to aid in operational risk management. HAPSITE is equipped with a hand-held sampling probe in which an air sample is delivered into a concentrator, and the VOCs collected in the concentrator are transferred, separated, and identified in the GC-MS. An upgraded version, HAPSITE ER, has recently been introduced with additional sampling capability for solid phase micro extraction and Thermal Desorption (TD). To our knowledge, however, no study has yet evaluated the performance of the thermal desorber accommodated in HAPSITE ER. In this study, therefore, we analyzed EPA Method TO-15 compounds with two different sampling methods (probe and thermal desorber for TD tubes) in a HAPSITE ER, and compared their results against each other. A major finding was that the peak intensities of the TO-15 compounds, particularly those with high Boiling Point (BP), were substantially higher in the results obtained with the thermal desorber than in those with the sampling probe. The lower peak intensities of the compounds observed in the probe analysis are likely due to the condensation of the VOCs in the probe (transfer) line that is 6 feet long and maintained at 40°C as they are delivered from the probe to the concentrator, whereas the thermal desorber is directly connected to the HAPSITE (no transfer line is used), thereby eliminating the condensation of VOCs. In conclusion, our study suggests that for the analysis of VOCs with high up to 220°C, the use of TD tubes followed by desorption in the thermal desorber offered by the newer version of HAPSITE is recommended.