国际标准期刊号: 2155-6199

生物修复与生物降解杂志

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • CAS 来源索引 (CASSI)
  • 哥白尼索引
  • 谷歌学术
  • 夏尔巴·罗密欧
  • 打开 J 门
  • Genamics 期刊搜索
  • 学术钥匙
  • 期刊目录
  • 研究圣经
  • 中国知网(CNKI)
  • 乌尔里希的期刊目录
  • 访问全球在线农业研究 (AGORA)
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • SWB 在线目录
  • 普布隆斯
  • 日内瓦医学教育与研究基金会
  • 米亚尔
  • ICMJE
分享此页面

抽象的

Comparison of Trichloroethylene Toxicity, Removal, and Degradation by Varieties of Populus and Salix for Improved Phytoremediation Applications

Rachel S. Miller, Zareen Khan and Sharon L. Doty

Trichloroethylene (TCE), a chlorinated organic solvent, is one of the three most common and widespread groundwater contaminants worldwide. Exposure to this contaminant has been linked to liver and kidney toxicity and cancer in humans and animals [1]. The Salicaceae family, which includes poplar and willow trees, has been very successful in phytoremediation efforts involving chlorinated solvents including TCE. Previous phytoremediation studies investigated removal of this contaminant using one or two genotypes, but a screening of a large number of genotypes in this family of plants had not yet been conducted. In this study, nine Populus and twelve Salix varieties were chosen for their previous success in phytoremediation efforts or local native significance, and experiments were conducted to compare toxicity, uptake, and degradation of TCE. Results from the toxicity screening demonstrated that hybrid poplar clones Crandon (Populus alba x grandidentata), Nisqually-1 (P. trichocarpa), D.Pa (P. alba) and willow clone S365 (Salix discolor) had the highest mass gain and best health at the highest TCE concentration. Percent removal of TCE in one week ranged from 19.2 to 44.9 with Crandon, P. deltoides hybrid 91x0403, poplar clone H11-11 (P. trichocarpa x deltoides), Salix sitchensis clone B, and Nisqually-1 all removing more than 40 percent of the TCE from hydroponic solution. In terms of TCE degradation, S. sitchensis clone B, poplar hybrid 91x0403, and hybrid poplar H11-11 had the most TCE metabolite, trichloroethanol, per gram of fresh plant weight, with the best performer, S. sitchensis clone B, having eight times the amount than the lowest genotype tested. These results indicated that there are significant differences in the ability of poplar and willow genotypes to remove and degrade TCE, and that many different genotypes could be successfully utilized for phytoremediation of TCE. This data set could be applied toward choosing the appropriate genotypes for the phytoremediation of TCE in a given location and climate.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证。