国际标准期刊号: 2155-952X

生物技术与生物材料

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • 哥白尼索引
  • 谷歌学术
  • 夏尔巴·罗密欧
  • 打开 J 门
  • Genamics 期刊搜索
  • 学术钥匙
  • 研究圣经
  • 中国知网(CNKI)
  • 访问全球在线农业研究 (AGORA)
  • 电子期刊图书馆
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • SWB 在线目录
  • 虚拟生物学图书馆 (vifabio)
  • 普布隆斯
  • 日内瓦医学教育与研究基金会
  • 欧洲酒吧
  • ICMJE
分享此页面

抽象的

Comprehensive analysis of molecular mechanism of Serine deficiency by computational approach

Momoko Hamano

L -serine (L-Ser), a dispensable amino acid, is synthesized via de novo synthesis from the glycolytic intermediate 3-phosphoglycerate with
3-phosphoglycerate dehydrogenase (Phgdh) catalyzing the first reaction step. L-Ser serves as a necessary precursor for the synthesis of proteins,
sphingolipids, folate metabolites, and amino acids such as D-serine and glycine. Previous in vivo study demonstrated that severe L-Ser deficiency
in mice with systemic targeted disruption of Phgdh, resulted in intrauterine growth retardation, multiple organ malformation, and embryonic lethality.
L-Ser biosynthesis defects in humans resulting from PHGDH mutations were identified to be a cause of L-Ser deficiency disorders and Neu–
Laxova syndrome, the symptoms of which include severe fetal growth retardation, microcephaly, still birth and/or perinatal lethality. These findings
have demonstrated that de novo L-Ser synthesis is essential for embryonic development and survival in mice and humans. Moreover, resent study
demonstrate that the decrease of L-Ser availability appears to correlate with symptoms of metabolic diseases and psychiatric diseases. These
studies raise the possibility that elucidation of the pathological mechanisms underlying L-Ser deficiency could provide an opportunity to develop
new therapies to alleviate symptoms of various diseases associated with reduced L-Ser availability. In this study, I aim to elucidate the molecular
mechanism of cytotoxicity induced by Ser deficiency under pathological condition. To understand the physiological significance of Ser in the brain,
I extracted characteristic gene expression pattern using microarray data and detected the active/inactive pathways caused by Ser deficiency.