国际标准期刊号: 2168-9806

粉末冶金与采矿学报

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • CAS 来源索引 (CASSI)
  • 哥白尼索引
  • 谷歌学术
  • 打开 J 门
  • Genamics 期刊搜索
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • 普布隆斯
  • 欧洲酒吧
分享此页面

抽象的

Coupling the Creation of Biogenic Nanoparticles with Metal Recovery through Biometallurgy

Leonidas Matsakas

Metal contamination in the environment can be caused by industrial processes such mining, electroplating, cement manufacture, metallurgical operations, as well as the production of plastics, fertilisers, insecticides, batteries, dyes, and anticorrosive agents [1-15]. Due to the non-biodegradable nature of metal pollution, their conversion into hazardous and cancer-causing chemicals, and their bioaccumulation along the food chain, this is an urgent issue. The recovery of rare earth elements and platinum group metals is encouraged at the same time due to their high commercial importance. Metal recovery in the form of nanoparticles can be facilitated by microbial interaction with metals or metal-bearing materials. Because of their distinct properties and potential uses, metal nanoparticles are receiving more and more attention. agents that fight bacteria and biofilms, biocatalysts for wastewater treatment, targeted medicine delivery, and water electrolysis. Metal nanoparticles ought to be uniform in size and shape and safe for both people and the environment. In contrast to chemical and physical processes, microbial production of nanoparticles is a safe and sustainable method. In this review paper, we primarily focus on the benefits of using metal and metal salt nanoparticles produced by a variety of microorganisms, including bacteria, fungus, microalgae, and yeasts, in biological, health, and environmental applications.

Metals and non-metals are supplied to the manufacturing and refining industries by mining, mineral processing, and extractive metallurgy. Mining produces waste products, just like all industrial activities do, and these wastes need to be properly treated and disposed of in order to prevent environmental damage. Additionally, the creation of cement, the burning of fossil fuels, the tanning of leather, and the production of plastics, fertilisers, Ni-Cd batteries, paints, pigments, and dyes result in the formation of wastewaters that are high in metal ions. Due to the nondegradable nature of some metal compounds, their potential toxicity or carcinogenicity, as well as their accumulation in animals through the food chains, metal-rich wastewaters pose a severe hazard to the ecosystem. The United States Environmental Protection Agency works to reduce contamination.