国际标准期刊号: ISSN:2167-7964

放射学组学杂志

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • 哥白尼索引
  • 谷歌学术
  • 打开 J 门
  • Genamics 期刊搜索
  • 研究圣经
  • 电子期刊图书馆
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • SWB 在线目录
  • 虚拟生物学图书馆 (vifabio)
  • 普布隆斯
  • 日内瓦医学教育与研究基金会
  • ICMJE
分享此页面

抽象的

Creation of an Accurate Artificial Neural Network Prediction Model of Radiologist Reported CT Features for Colorectal Anastomotic Leaks

Adams K, Hansmann A, Bosanac D, Peddu P, Ryan S and Papagrigoriadis S

Objective: As colorectal anastomotic leaks (AL) often present with non-specific clinical features, Computed Tomography (CT) scans are commonly used to aid in diagnosis. Aim was to define radiologist reported features in CT scans following colorectal resection as diagnostic factors for clinical AL detection.

Methods: Consecutive patients identified with a clinically confirmed post-operative AL. Control group (matched 2:1 ratio) selected from patients who were scanned with a clinical suspicion of an AL, though eventually disproved and who did not require re-operation. Four gastrointestinal radiologists reviewed CT scans, blinded to clinical outcome. Radiologists assessed for the overall impression of a radiological AL and presence of the adjunct leak features. A leak prediction model was constructed with multivariate logistic regression with outcome classified as clinical AL.

Results: 18 patients with confirmed AL, 36 matched control patients. No significant difference in the sensitivity/specificity between the radiologists in accuracy of leak detection, with overall correct diagnosis of clinical AL 81.4%. Radiological Leak, abnormal bowel wall appearance and ileus were significant predictors (P<0.05) within regression model. The prediction model produced an overall sensitivity 85.2%, specificity 80.2% and ROC curve area of 87.3%.

Conclusion: Individual radiologist reported CT features have been used to create a risk prediction model that improves diagnostic accuracy of AL over general radiological impression alone.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证。