国际标准期刊号: 2155-952X

生物技术与生物材料

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • 哥白尼索引
  • 谷歌学术
  • 夏尔巴·罗密欧
  • 打开 J 门
  • Genamics 期刊搜索
  • 学术钥匙
  • 研究圣经
  • 中国知网(CNKI)
  • 访问全球在线农业研究 (AGORA)
  • 电子期刊图书馆
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • SWB 在线目录
  • 虚拟生物学图书馆 (vifabio)
  • 普布隆斯
  • 日内瓦医学教育与研究基金会
  • 欧洲酒吧
  • ICMJE
分享此页面

抽象的

Demonstrating a material making process through the cultivation of mycelium growth

Dilan Ozkan

Today, mycelium is used in many different ways: As packaging in industry; as acoustic panels; wall insulation; bricks in buildings; as a textile or as a raw material in designed objects such as furniture. The purpose of this research is to explore the ways to cultivate mycelium as a living building material that has its own tendencies. Going beyond the limitations of linear moulding techniques and developing a method that guides the mycelium growth will help designers to, as Richard Sennett says, always be a step ahead of the material. The first phase of the study involves experimentation by paying close attention to any factors that might cause a difference in the behaviour of mycelium, to understand its properties and nature. After having understood its act, the research will continue by the cultivation of mycelium growth. Design of an automated system that enables to reach the intended growth, by anticipating its reactions, is going to be the end product and the final phase of this investigation. In this study, rethinking about architectural fabrication that focuses on revealing potentials of living organisms such as autonomy, self-assembly or responsivity, can demonstrate a new approach in material making processes and geometries.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证。