国际标准期刊号: 2155-952X

生物技术与生物材料

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • 哥白尼索引
  • 谷歌学术
  • 夏尔巴·罗密欧
  • 打开 J 门
  • Genamics 期刊搜索
  • 学术钥匙
  • 研究圣经
  • 中国知网(CNKI)
  • 访问全球在线农业研究 (AGORA)
  • 电子期刊图书馆
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • SWB 在线目录
  • 虚拟生物学图书馆 (vifabio)
  • 普布隆斯
  • 日内瓦医学教育与研究基金会
  • 欧洲酒吧
  • ICMJE
分享此页面

抽象的

Developing nanostructured Ti Alloys for innovative implantable medical devices

Timur B. Minasov

Recent years have witnessed much progress in medical device manufacturing and the needs of the medical industry urges modern nanomaterials science to develop novel approaches for improving the properties of existing biomaterials. One of the ways to enhance the material properties is their nanostructuring by using severe plastic deformation (SPD) techniques. For medical devices, such properties include increased strength and fatigue life, and this determines nanostructured Ti and Ti alloys to be an excellent choice for the engineering of implants with improved design for orthopedics and dentistry. Various reported studies conducted in this field enable the fabrication of medical devices with enhanced functionality. We review recent development in the field of nanostructured Ti-based materials and provide examples of the use of ultra‐fine grained Ti alloys in medicine. Our studies have proven that nanostructuring of titanium materials by means of severe plastic deformation (SPD) techniques achieving grain refinement, increase of dislocation density, dissolution, and formation of secondary phase precipitations allows for considerable improvement of the strength and fatigue properties. The advantages of nanostructuring were demonstrated for CP Ti, Ti alloys including new β-Ti alloys as well as the NiTi alloy with shape memory effect. The approaches to computer design of a number of miniaturized medical implants made from highstrength nanomaterials have been suggested. Study includes the examples of manufacturing and tests of selected advanced medical devices for traumatology and surgery from Ti nanobiomaterials. Taking into account the results of recent studies on surface modification, including chemical etching of nanometals and deposition of bioactive coatings, it is assumed that the developments of Ti‐based nanomaterials opens new possibilities for advanced medical implants and devices with improved design and functionality.