国际标准期刊号: 2155-9872

分析与生物分析技术杂志

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • CAS 来源索引 (CASSI)
  • 哥白尼索引
  • 谷歌学术
  • 夏尔巴·罗密欧
  • 学术期刊数据库
  • 打开 J 门
  • Genamics 期刊搜索
  • 期刊目录
  • 研究圣经
  • 中国知网(CNKI)
  • 乌尔里希的期刊目录
  • 电子期刊图书馆
  • 参考搜索
  • 研究期刊索引目录 (DRJI)
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • 学者指导
  • SWB 在线目录
  • 虚拟生物学图书馆 (vifabio)
  • 普布隆斯
  • 欧洲酒吧
  • ICMJE
分享此页面

抽象的

Development of a HPLC-UV Method for the Simultaneous Determination of Intracellular Glutathione Species in Human Cells

Lipsa D, Cacho C, Leva P, Barrero-Moreno J and Aguar P

In the present work, an HPLC-UV method was set-up to allow the simultaneous quantification of the reduced- GSH, oxidised-GSSG and nitroso-GSNO glutathione species. Chromatographic separation was achieved on YMC ODS-A C18 column (150 × 4.6 mm, 5 μm), coupled to a Guard-c precolumn (YMC-Pack, 10 × 1-4,0 mm). The eluted compounds were detected at 215 nm by UV-detector, by keeping the column oven at room temperature while the auto-sampler temperature was maintained at 4°C. A fractional factorial design has been applied for the optimization of the mobile phase resulting in baseline separated peaks within 6 minutes. In-house validation was evaluated by linearity, limits of detection (LODs), limits of quantification (LOQs), reproducibility, repeatability and recovery. The detection and quantification limits obtained for standard solutions were below 0.2 μM and 0.6 μM, respectively (RSD values below 2%). The developed method was applied to the measurement of GSH, GSSG and GSNO in human pulmonary cells (A549) exposed to limonene, limonene oxide solubilized into the culture medium and to NO2 as gas phase. Results show an increase in GSH levels, without significant changes in GSSG, when cells were exposed to limonene oxide, while cells exposed to NO2 resulted in a significant increase of GSNO amount. Detection limits were of 1 μM for the glutathione species measured in A549 cells, with RSD values below 2.5%. In conclusion, the present HPLC-UV method can be readily used to measure in a rapid, simultaneous and accurate way the status of GSH, GSSG and GSNO in human cells, their simultaneous quantification helping to better predict the potential impact of chemicals on human health.