国际标准期刊号: 2155-9872

分析与生物分析技术杂志

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • CAS 来源索引 (CASSI)
  • 哥白尼索引
  • 谷歌学术
  • 夏尔巴·罗密欧
  • 学术期刊数据库
  • 打开 J 门
  • Genamics 期刊搜索
  • 期刊目录
  • 研究圣经
  • 中国知网(CNKI)
  • 乌尔里希的期刊目录
  • 电子期刊图书馆
  • 参考搜索
  • 研究期刊索引目录 (DRJI)
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • 学者指导
  • SWB 在线目录
  • 虚拟生物学图书馆 (vifabio)
  • 普布隆斯
  • 欧洲酒吧
  • ICMJE
分享此页面

抽象的

Development of a Saliva-based Lateral Flow Assay for SARS-CoV-2 with the potential to quantify viral load

Chetan Shende, Duncan Farquharson, Stuart Farquharson

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is one of the deadliest virus in the last 50 years, with the USA having the highest reported deaths and cases at over 1.1 million and over 100 million, respectively, as of June 1, 2023. Identifying infected people remains the primary method of stopping the spread of the virus, either using real-time, quantitative polymerase chain reaction instruments or at-home lateral flow assay (LFA) antigen tests. Herein we describe a simple four step at-home SARS-CoV-2 LFA test that provides three advantages over current LFAs. The test employs 1) saliva sampling, 2) three antibodies to bind the virus to the LFA Test Line, and 3) a smartphone to quantify the reflectance of the Test Line in terms of Ct values. The use of saliva samples eliminates the pain and fear of nasopharyngeal sampling, especially for children. The use of three antibodies yielded 100% correct sensitivity, specificity, predicted positive and predicted negative for samples with Ct values of 29 and below. The use of a smartphone to measure reflectance allowed calculating the Ct values for 16 samples with an average error and standard deviation of 0.58±0.43 for samples with Ct values below 26. The smartphone also adds the capability of sharing the results to track and slow the spread of the virus. The combination lateral flow assay and smartphone quantitation is well suited for identifying, quantifying, and slowing the spread of future viruses.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证。