国际标准期刊号: 2161-0460

阿尔茨海默病和帕金森病杂志

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • 哥白尼索引
  • 谷歌学术
  • 夏尔巴·罗密欧
  • 打开 J 门
  • Genamics 期刊搜索
  • 学术钥匙
  • 期刊目录
  • 中国知网(CNKI)
  • 电子期刊图书馆
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • SWB 在线目录
  • 虚拟生物学图书馆 (vifabio)
  • 普布隆斯
  • 日内瓦医学教育与研究基金会
  • 欧洲酒吧
  • ICMJE
分享此页面

抽象的

Diabetes Effects in Alzheimer Disease: The Interactive Role of Insulin and Aβ Peptide

Maria Elisa de Oliveira Lanna, Maria Lucia Vellutini Pimentel and Sergio Augusto Pereira Novis

Insulin resistance, hyper-insulinemia and products associated to insulin metabolism can affect the amyloid cascade and promote the onset of Alzheimer`s disease or aggravate the condition, in early or old age regardless of the development of type 2 diabetes. The changes described in pathological studies and molecular research, classify two types of mechanism involved with cognitive impairment in these cases: one related to cerebrovascular events due the action of vascular risk factors, and the other more controversial, non-cerebrovascular mechanism involving the interaction of insulin with Aβ in the entorhinal cortex and hippocampus, as well as its synaptogenesis action that involves signaling of intracellular molecular paths in the modulating of neurotransmitters such as acetylcholine, norepinephrine and glutamate receptors. Based on a literature review, the role of insulin in the Central Nervous System is examined along with its participation in the amyloidogenesis process in progression to Alzheimer Disease. This review also addresses the consequence of chronic peripheral hyperinsulinemia, leading to down-regulation of insulin receptors in the blood-brain barrier and decreased insulin up-take, causing a state of central hypoinsulinism. This state interferes mainly in the process of Aβ degradation, emphasizing the role of the catalytic enzymes in Aβ clearance, particularly of the insulinase. Among others, increasing synaptic toxicity by disrupting PI3K/Akt inhibition of the GSK3 intracellular molecular pathway increasing tau phosphorylation, as well as PKC synaptogenesis signaling, causing clinical and anatomic changes that favor Alzheimer Disease.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证。