我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

抽象的

Diagnosis and Detection of Infected Tissue of Covid-19 Use of Pcr-Based In Northern Tanzania

Sarah Reemst

The COVID-19 epidemic has put the world's scientists to the test. The international community works to develop fresh ways as quickly as feasible for the diagnosis and treatment of COVID-19 patients [1]. Currently, a reverse transcription-polymerase chain reaction is a trustworthy tool for identifying infected patients [2]. The process is time- and money-consuming. Designing innovative methods is crucial as a result. In this study, we used X-ray pictures of the lungs to identify and diagnose COVID-19 patients using three deep learning-based approaches. We proposed two algorithms deep neural network (DNN) on the fractal characteristic of images and convolutional neural network approaches using the lung images directly for the diagnosis of the condition [3]. The classification of the results reveals that the proposed CNN architecture a new coronavirus disease first appeared in Wuhan, China, in December 2019, and it quickly spread over the world [4]. It has so far caused millions of confirmed illnesses and thousands of fatalities worldwide. Therefore, it is crucial to identify COVID-19 as soon as possible in order to stop its spread and lower its mortality [5]. Currently, reverse transcription polymerase chain reaction is the gold standard in the diagnosis of COVID-19 [6]. In this test, viral nucleic acid from sputum or a nasopharyngeal swab is found. This testing mechanism has a few drawbacks [7]. First off, this test requires particular materials that are not generally accessible. Additionally, this test takes a lot of time and has a poor true positive sensitivity rate [8]. DNNs may extract intelligence from the dataset, which results in superhuman performances in a variety of applications, thanks to the availability of enormous datasets and strong graphical processing units. Additionally, recent research has looked towards effective DNN architecture synthesis [9].

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证。