我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • CAS 来源索引 (CASSI)
  • 哥白尼索引
  • 谷歌学术
  • 夏尔巴·罗密欧
  • 在线访问环境研究 (OARE)
  • 打开 J 门
  • 学术钥匙
  • 期刊目录
  • 访问全球在线农业研究 (AGORA)
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • 学者指导
  • SWB 在线目录
  • 普布隆斯
  • 欧洲酒吧
分享此页面

抽象的

Distribution of Wheat Stem Rust (Puccinia Graminis F. Sp. Tritici) in West and Southwest Shewa Zones and Identification of its Phsiological Races

Alemayehu Hailu, Getaneh Woldeab, Woubit Dawit and Endale Hailu

Stem rust (black rust) caused by Puccinia graminis f.sp.tritici is one of the most important air borne diseases of wheat (Triticum aestivum) in the central high lands of Ethiopia, including west and southwest Shewa zones. The pathogen is capable to produce new physiological races that attack resistant varieties and develop epidemic under favorable environmental conditions which results in a serious yield loss. However, information on the status of stem rust distribution and races in west and southwest Shewa zones is lacking. Therefore, the present studies were based on stem rust survey to compute the prevalence and intensity of disease; race analysis via inoculation of stem rust isolates and multiplication of single-pustule of the pathogen and race designation by inoculating on wheat differential lines. Eighty six wheat fields were assessed in 12 districts of west and south west Shewa zones with altitude ranges between1925-2915 m.a.s.l. Seventy five (87.2%) wheat fields infected with stem rust had the overall mean of 33% incidence and 10.8% severity. The mean prevalence of stem rust was 96.3% in southwest and 83.1% in west Shewa zones, whereas, the mean incidence was 34.7% and 31.2% in west and southwest Shewa zones, respectively. Similarly, mean severity was 14.5% in west and 7.1% in southwest Shewa zones. Forty five stem rust samples collected during the survey were analyzed on the twenty standard stem rust differentials and resulted in identification of 5 races (TTTTH, TTKSK, TKTTF, HKPPF & HKNTF). Of these, 88.4% of the isolates were TKTTF (Digalu race) followed by 4.7% of the isolates by TTKSK (Ug99). Among the five races, the most virulent, which made 18 Sr genes non-effective was TTTTH. TKTTF and TTKSK races were virulent on 85% of Sr genes. Differential host carrying Sr24 was an effective gene which confers resistance to all of the races identified in the area. On the other hand, the wheat differential hosts carrying the resistance genes Sr McN, Sr10, Sr9a, Sr30, Sr9g, Sr8a, Sr6, Sr7b and Sr21 were ineffective to 100% of the isolates tested. Hence, the Sr resistance gene Sr24 can be used as sources of resistance in wheat breeding program.