国际标准期刊号: 2168-9806

粉末冶金与采矿学报

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • CAS 来源索引 (CASSI)
  • 哥白尼索引
  • 谷歌学术
  • 打开 J 门
  • Genamics 期刊搜索
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • 普布隆斯
  • 欧洲酒吧
分享此页面

抽象的

Dry Sliding Tribological Behavior at Elevated Temperature of In Situ Aluminum Matrix Composites Fabricated by Al-ZrO2-C System with Different Mole Ratio of C/ZrO2

Zhu H*, Xiaodong Sun, Jiewen Huang, Jianliang Li and Zonghan Xie

The tribological behavior of the composites fabricated by an Al-ZrO2-C system with different mole ratios of C/ZrO2 at elevated temperature in air atmosphere were investigated by using a pin-on-disc wear tester. The reinforcement amounts and kinds of the composites varied with molar ratio of C/ZrO2. With the increase of the molar ratio of C/ ZrO2 from 0 to 1, the Al3Zr blocks decrease gradually and almost disappear finally. On the contrary, the ZrC particles form and increases in its amount. At elevated temperature, the composites have similar variation trend in the mass loss varied with sliding velocity and applied load, respectively. When the test temperature is at 373 K, the mass loss increases with increasing the sliding velocity, and when the sliding velocity is around 0.6 m/s, the mass loss increases to a maximum value and then decreases with further increase in sliding velocity. However, the mass loss always decreases with increasing the sliding velocity at 473 K. With the increase of C/ZrO2 molar ratio, the wear resistance of the composite increases and its friction coefficient decreases. The metal flows and adhesive wear become the main wear modes with increasing the applied load and test temperature.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证。