国际标准期刊号: 2155-6199

生物修复与生物降解杂志

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • CAS 来源索引 (CASSI)
  • 哥白尼索引
  • 谷歌学术
  • 夏尔巴·罗密欧
  • 打开 J 门
  • Genamics 期刊搜索
  • 学术钥匙
  • 期刊目录
  • 研究圣经
  • 中国知网(CNKI)
  • 乌尔里希的期刊目录
  • 访问全球在线农业研究 (AGORA)
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • SWB 在线目录
  • 普布隆斯
  • 日内瓦医学教育与研究基金会
  • 米亚尔
  • ICMJE
分享此页面

抽象的

Effects of Co-Culture of Graphene Oxide Scaffolds with Different Concentrations and Umbilical Mesenchymal Stem Cells on the Proliferation and Differentiation of Stem Cells

Aifeng Liu , Qiang Wei , Jixin Chen, Shuwei Gong, Ye Yuan

The main role of the scaffold materials is to enable cells to survive in the scaffold binding as while as to further promote their proliferation and differentiation ability. For mesenchymal stem cell, the scaffold could provide an environment for them to maintain their phenotype, and synthesize all necessary molecules and proteins. Generally, scaffold materials for stem cell need to possess basic characteristics such as high porosity, large surface area, surface rigidity and biodeg-radability. Thus, the two-dimensional Graphene Oxide (GO) with oxygen-containing functional groups may be suitable scaffold materials for mesenchymal stem cell culture. In this study, the effect of GO on the value-added differentiation activity of mesenchymal stem cell was systematically investigated. It was found that low concentration of GO and sufficient concentration of umbilical cord mesenchymal stem cells are suitable for the second Co-culture. Furthermore, the addition of hyaluronic acid will make this culture more evenly distributed. The adsorption of GO on umbilical cord mesenchymal stem cells can also make the two closely linked, which avoids the impact of animal joint activities on cells.