我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • 哥白尼索引
  • 谷歌学术
  • 夏尔巴·罗密欧
  • 打开 J 门
  • Genamics 期刊搜索
  • 学术钥匙
  • 电子期刊图书馆
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • SWB 在线目录
  • 虚拟生物学图书馆 (vifabio)
  • 普布隆斯
  • 欧洲酒吧
分享此页面

抽象的

Energy Adaptive Glass Matter

Alston ME*

The critical aims of glass envelope design and development must be to enable measures upon glass buildings to prevent uncontrolled heating of the building surfaces, increase emissivity and the impacts of this heat conduction into the building interior spaces. Current glass envelopes depend upon hybrid facades, double skin glass facades; solar shading; passive solar energy systems (transparent insulation materials, solar glazing balconies) to reduce solar temperature gains upon this surface. The envelope performance is based upon measures in the reduction of heat conduction via the material that form its surface, to resolve the conflicts between services and fabric provisions (such as heating systems fighting cooling systems). New materials have been developed of increased performance to resolve this issue by product and component development. For example the integration of solar active elements within the glass panels. However glass building envelopes constructed in hot locations (where temperature are over 40 degrees) have the poorest lighting levels, as the needs to control thermal conduction and high energy consumption needs, to cool the building. These buildings are dependent upon artificial lighting and the reliance of HVAC systems.

The current technological development strategies for the building envelope is a static one, by this understanding materials are used without the ability to react to differing climatic zones or recognition of its global positioning. This is in contrast to the nature’s adaptive functions, an adaptive bio-system in constant change to the influence of ambient temperature, solar radiation gain, exposure to wind and changing micro climatic variations. This reactive system is not transposed or reflected into the building envelope systems currently deployed. This non-reactive envelope gives little recognition of the response to climatic change or strategy variation to meet changing environmental situation. This approach is not reflected in nature, as these biosystems have the ability to adapt and control material composition. Could the innovation and direction of a nature-inspired intelligent control of glass matter enable a new paradigm that will lead us in a direction to discover more adaptive systems in a dynamic response to our climate. To use the frontiers of science, in materials, in chemistry and physics, at a nanotechnology and biotechnology scale for greater control of thermal conduction.

Could the essence of nature forge evolution, in the creation of climatic responsive skins, by the principles of: material thermal facade behavior and thermal material temperature management. The employment of these objectives is to create material matter that is reactive in real-time to climatic change to enable thermal material management and regulation of its own material temperature. A dynamic skin that is responsive to the influence of ambient temperature, solar regulation gain as a adaptive biosystem.